The Echiura, or spoon worms, are a small group of ocean . Once treated as a separate phylum, they are now considered to belong to Annelida. Annelids typically have their bodies divided into segments, but echiurans have secondarily lost their segmentation. The majority of echiurans live in burrows in soft sediment in shallow water, but some live in rock crevices or under boulders, and there are also deep sea forms. More than 230 species have been described. Spoon worms are cylindrical, soft-bodied animals usually possessing a non-retractable proboscis which can be rolled into a scoop-shape to feed. In some species the proboscis is ribbon-like, longer than the trunk and may have a forked tip. Spoon worms vary in size from less than a centimetre in length to more than a metre.
Most are deposit feeders, collecting detritus from the sea floor. of these worms are seldom found and the earliest known fossil specimen is from the Darriwilian.
They are now universally considered to represent derived annelid worms; as such, their ancestors were segmented worms but echiurans have secondarily lost their segmentation. Their presumed sister group is the Capitellidae.
Having no hard parts, these worms are seldom found as fossils. One of the oldest known unambiguous examples is Coprinoscolex ellogimus from the Mazon Creek fossil beds in Illinois, dating back to the Middle Pennsylvanian period. This exhibits a proboscis, cigar‐shaped body and convoluted gut, and shows that already at that time, echiurans were unsegmented and were essentially similar to modern forms. However, U-shaped that could be Echiuran have been found dating back to the Cambrian, and an Ordovician species of thalassematid named Llwygarua was found in the Castle Bank lagerstätte.
Compared with other annelids, echiurans have relatively few (bristles). In most species, there are just two, located on the underside of the body just behind the proboscis, and often hooked. In others, such as Echiurus, there are also further setae near the posterior end of the animal. Unlike most annelids, adult echiurans have no trace of segmentation. Most echiurans are a dull grey or brown but a few species are more brightly coloured, such as the translucent green Listriolobus pelodes.
The body wall is muscular. It surrounds a large coelom which leads to a long looped intestine with an anus at the rear tip of the body. The intestine is highly coiled, giving it a considerable length in relation to the size of the animal. A pair of simple or branched diverticulum are connected to the rectum. These are lined with numerous minute Cilium funnels that open directly into the body cavity, and are presumed to be excretory organs. The proboscis has a small coelomic cavity separated from the main coelom by a septum.
Echiurans do not have a distinct respiratory system, absorbing oxygen through the body wall of both the trunk and proboscis, and through the cloaca in Urechis. Although some species lack a blood vascular system, where it is present, it resembles that of other annelids. The blood is essentially colourless, although some haemoglobin-containing cells are present in the coelomic fluid of the main body cavity. There can be anywhere from one to over a hundred metanephridium for excreting nitrogenous waste, which typically open near the anterior end of the animal. The nervous system consists of a brain near the base of the proboscis, and a ventral nerve cord running the length of the body. Aside from the absence of segmentation, this is a similar arrangement to that of other annelids. Echiurans do not have any eyes or other distinct sense organs, but the proboscis is presumed to have a tactile sensory function.
In the 1970s, the spoon worm Listriolobus pelodes was found on the continental shelf off Los Angeles in numbers of up to 1,500 per square metre (11 square feet) near sewage outlets. The burrowing and feeding activities of these worms churned up and aerated the sediment and promoted a balanced ecosystem with a more diverse fauna than would otherwise have existed in this heavily Pollution area.
Digging behaviour has been studied in Echiurus echiurus. When burrowing, the proboscis is raised and folded backwards and plays no part in the digging process. The front of the trunk is shaped into a wedge and pushed forward, with the two anterior chaetae (hooked chitinous bristles) being driven into the sediment. Next the rear end of the trunk is drawn forward and the posterior chaetae anchor it in place. These manoeuvres are repeated and the worm slowly digs its way forwards and downwards. It takes about forty minutes for the worm to disappear from view. The burrow descends diagonally and then flattens out, and it may be a metre or so long before ascending vertically to the surface.
Spoon worms are typically , extending the flexible and mobile proboscis and gathering organic particles that are within reach. Some species can expand the proboscis by ten times its contracted length. The proboscis is moved by the action of cilia on the lower (ventral) surface "creeping" it forward. When food particles are encountered, the sides of the proboscis curl inward to form a ciliated channel.
A worm such as Echiurus, living in the sediment, extends its proboscis from the rim of its burrow with the ventral side on the substrate. The surface of the proboscis is well equipped with mucus glands to which food particles adhere. The mucus is bundled into boluses by Cilium and these are passed along the feeding groove by cilia to the mouth. The proboscis is periodically withdrawn into the burrow and later extended in another direction.
Urechidae, another group of tube-dwellers, has become . The food composition of the symbiotic crab Pinnixa rathbunae Sakai, 1934 (Brachyura: Pinnotheridae) from burrows of the spoon worm Urechis unicinctus (von Drasche, 1881 (Echiurida: Urechidae) in Vostok Bay of the Sea of Japan It has a short proboscis and a ring of mucous glands at the front of its body. It expands its muscular body wall to deposit a ring of mucus on the burrow wall then retreats backwards, exuding mucus as it goes and spinning a mucus net. It then draws water through the burrow by Peristalsis and food particles stick to the net. When this is sufficiently clogged up, the spoon worm moves forward along its burrow devouring the net and the trapped particles. This process is then repeated and in a nutrient-rich area may take only a few minutes to complete. Large particles are squeezed out of the net and eaten by other living Commensalism in the burrow. These typically include a small crab, a Polynoidae and often a fish lurking just inside the back entrance.
Ochetostoma erythrogrammon obtains its food by another method. it has two vertical burrows connected by a horizontal one. Stretching out its proboscis across the substrate it shovels material into its mouth before separating the edible particles. It can lengthen the proboscis dramatically while exploring new areas and periodically reverses its orientation in the burrow so as to use the back entrance to feed. Other spoon worms live concealed in rock crevices, empty gastropod shells, sand dollar tests and similar places, extending their proboscises into the open water to feed. Some are or detritivores, while others are interface grazers and some are Filter feeder.
While the proboscis of a burrowing spoon worm is on the surface it is at risk of predation by bottom-feeding fish. In some species, the proboscis will Autotomy (break off) if attacked and the worm will regenerate a proboscis over the course of a few weeks. In a study in California, one of the most commonly found dietary items of the leopard shark was found to be the tube-dwelling Urechis caupo ( Urechis caupo) which it extracted from the sediment by suction.
Fertilization is internal in the sexual dimorphic order Bonelliida, which has dwarf males living inside the female. Members of the order Echiurida have external fertilization and are sexual monomorphic.
Fertilized eggs hatch into free-swimming trochophore larvae. In some species, the larva briefly develops a segmented body before transforming into the adult body plan, supporting the theory that echiurans evolved from segmented ancestors resembling more typical annelids.
The species Bonellia viridis, also remarkable for the possible antibiotic properties of bonellin, the green chemical in its skin, is unusual for its extreme sexual dimorphism. Females are typically in body length, excluding the proboscis, but the males are only long, and spend their adult lives within the genital sac of the female.
Distribution and habitat
Behaviour
Reproduction
Culinary use
List of families
External links
|
|